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(6) The most striking feature of the experimental results is, that for 
all concentrations investigated, the molecular lowering of vapor tension 
is the same. Thus the lowering of a 0.2 M solution is 0. n o mm., while 
that of the 2.0 M solution is 1.1102 mm. Similar results have been 
obtained by Tower and Germann1 from a study of the vapor tension of 
alcoholic solutions of potassium bromide and lithium chloride. Whether 
this phenomenon can be explained by the combination of the solvent and 
solute, as suggested by Tower and Germann, cannot be decided until 
the rigid applicability of Raoult's law has been tested with some non-
electrolyte over the same range of concentration. This the authors 
purpose doing as soon as possible. 
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Van der Waals' equation, (p + a/v2) (v — b) = RT, has for thirty 
years been accepted by chemists and physicists as a most valuable guide 
in the study of the behavior of gases and liquids. On the other hand, 
•the limitations of the equation of the distinguished Hollander have also 
come to be generally recognized. From any two of the three quantities, 
critical temperature, critical pressure and critical volume, the theory of 
van der Waals enables us to calculate a and b. But if from the values of 
o and b so obtained, we calculate the third critical quantity, our result 
will be widely at variance with the facts. This is also evident when we 
remember that the theory of van der Waals requires that the critical 
density shall be 2.67 times that of an "ideal" gas under the same condi
tions of temperature and pressure, whereas in all cases hitherto investi
gated the ratio is much larger, usually about 3.7. Most of the modifica
tions of the equation attempt to meet this condition of affairs, but are un
able to raise the ratio above three. 

Now there seems to be no doubt that the general ideas underlying the 
theory of van der Waals are of great value, enabling us to obtain a better 
insight into the nature of gases and liquids. I t would seem to be worth 
while inquiring whether another method of deriving the equation of state 
is not theoretically sounder and more justifiable. 

Van der Waals' method of applying a correction to the volume of the 
gas seems to be correct in principle, although the correction represented 
by the letter b may not be,a "constant." Leaving out of account the 
surface layer of unknown thickness, the pressure throughout the fluid 
should undoubtedly be represented by the expression RT/v — b. Owing, 
however, to unbalanced molecular forces in the surface layer directed to-

1 THIS JOURNAL, 36, 2449 (1914). 
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wards the interior, the external pressure will be less than RT/u — b by 
the pressure due to the unbalanced molecular forces. Van der Waals 
assumes this molecular pressure, to be represented by a/V and thus ob
tains his equation 

= JIT_ a_ 
v — b v1 

Now it may well be that in order to obtain the external pressure, we 
should, instead of subtracting a term from R T / J J — b, multiply it by a 
function, which will of course always be less than unity. This is the re
sult that Dieterici1 has obtained, and I shall indicate as briefly as possi
ble his method of reasoning. 

In the interior of a fluid the attractive forces between the molecules 
are balanced; only near the surface are the molecules subject to an un
balanced force directed towards the interior. Molecules with suffi
ciently low velocities moving towards the surface will be unable to reach 
it, while all molecules moving from the surface towards the interior will 
be assisted by the force directed inward. The result will be that the 
density of the surface layer will decrease from the interior towards the 
surface, where its value will depend on the external pressure. Only mole
cules having a velocity greater than a certain value will be able to pene
trate this inhomogeneous layer and exert a pressure on the walls of the 
containing vessel. If we can determine what fraction of the total num
ber of molecules has a velocity greater than a fixed value, then the ex
ternal pressure (p) will be that fraction of the pressure in the interior, 
RT/v — b. Now if a be the most probable speed, and s be the speed a 
molecule must possess in order to be able just to penetrate to the surface, 
then the fraction we are considering is calculated to be e~st/al,. where e 
is the base of the natural logarithms. If we introduce the speed c, the 
square root of the mean of the squares of the speeds, we have c8 = '/2 a2 

_ y « £ » 
and our fraction becomes e >/•«•. If m be the mass of a molecule 

_ 1ZlHtIU' 
and n the number of molecules, the expression may be written e >/>nm<? = 

_ VtItBM' 

e RT . Now 1IiMs* is the work done by a molecule against the 
molecular forces in reaching the wall; we can therefore write the follow
ing equation: 

*> = - ^ L / - A / R T (i) 
v — 0 

where A is a measure of the work done by the molecules in penetrating 
to the surface. If now we make an assumption as to how A depends on 
the volume, we shall obtain an equation of state. Dieterici assumes 
that A is proportional to the density or A = a/v and thus obtains the 
Dieterici equation of state 

1 Ann. Physik. u. Chem., 11, 700 (1899). 
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The object of this paper may be said to be to study this equation in 
detail and to apply it to a number of well-investigated substances. The 
results obtained seem worthy of consideration. Dieterici himself showed 
that his equation reproduces the critical state very well, and in particular 
gives 3.695 as the value of the ratio B.Tc/pcvc, in close agreement with 
the actual results obtained by Young and others. As far as I can learn 
from the available literature, Dieterici did not get much farther and has 
not persuaded chemists and physicists to adopt his form of the equation 
of state. One great difficulty in testing the equation lies in the fact that 
the "constants" 0 and b are really variables. This has been generally 
recognized in recent years and the view has been expressed that they are 
both temperature and volume functions. I hope to show that they are 
mainly functions of the temperature and that their variation with change 
in volume is probably small. 

Before proceeding to study Dieterici's equation further, it might be 
well to show its relation to the original one of van der Waals. Dieterici's 
equation can be written, when the volume v is large as compared with h 
in the form 

= RT ( _ J*_\ = RT_ _ a 

v — b\ Z)RT / v — b v(v — b)' 

which is virtually identical with the van der Waals p = R T / (v — b) — 
a/v2. It is evident then that all the results obtainable from the van der 
Waals equation will be deducible from the Dieterici equation when only 
low pressures are considered. When a gas is under high pressure and, in 
particular, when the gas is in the critical state, the two equations will 
differ considerably. And it is to be noted that it is just here that the van 
der Waals equation loses its validity, while the Dieterici equation re
produces the critical results in most cases with accuracy. 

Critical State. 
The values of p, v, and T at the critical state in terms of a, b and R 

are obtained by putting (dp/dv)? — 0 and (d2p/dv2)? = 0. If we plot 
the Dieterici equation having the pressures as ordinates and the volumes 
as abscissae, we shall get for different values of T the isothermal curves. 
The geometrical interpretation of (dp/dv)? = 0 is that, when this con
dition holds, we have a horizontal tangent; that is, the curve has at this 
point a maximum or minimum value or a point of inflexion. If the sec
ond derivative also vanishes for the same values of v, the point is a point of 
inflexion. And that is the critical point. Assuming that a and b are 
independent of the volume, we obtain the following results: 
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\dv /T 
-j/tRT (RTu2 — av + ab) 

v*(v — by 
W _ a ^ - & ) \ 

»— b \ U2RT / W 

(d*p\ = e-a/vRr I" 2 R T a2 _ 

\ * 2 / T L(u — fc)3 RTo«(w — b) 
^a 2Q "J , v 

u3(z; — 6) v\v — 6)2J 
Now (dp/dv)? will vanish when u is infinitely great, a value which does 

not concern us here; when v is equal to zero, which is a physically impossi
ble value since v cannot be less t han b; and finally when RTi)2 — av -+-
<ab = 0. F rom this equation we obtain 

a ± Vo2 — 4ai)RT . , 
— • (5) 2RT 

This result shows us t h a t there are always two horizontal tangents, real 
or imaginary or coincident. T h e two tangents coincide a t the critical 
point and Equat ion 5 tells us t h a t a t this point a2 — 4a6RT = 0. A t 
the critical point, a = 46RT11 and therefore the critical temperature T c 

is equal to 0 /46R; a t the same time, from Equat ion 5 we find t h a t t h e 
critical volume vc is equal to a / 2 R T c and therefore equal to 2b. Sub
st i tut ing these values in the Dieterici equation of state, we obtain 

R T , 2RTC a a 

e2b eh)c 402^2 29.56b2 

Hence RTc/pcvc = ee/2 = 3.695. 
These results could of course have been obtained by combining 

(dp/dv)? = 0 with (d2p/dv2)? = 0, but the method adopted is somewhat 
simpler. In any case, one can easily satisfy himself that the values ob
tained for vc and Tc will make both derivatives vanish. 

I t may be interesting to compare these results with those derived from 
the original van der Waals equation. 

Van der Waals. Dieterici. 

vc = 3 6 vc = 26 
Tc = 80/27R6 T6 = C1/4R& 
pc = a/2762 pc = a / V b 2 = a/29.5662 

That the isothermals as given by the Dieterici equation will have 
the same general appearance as those given by that of van der Waals will 
be evident if we consider that the condition for a horizontal tangent is 
given by Equation 5. At the critical temperature the two values of v 
coincide; above this temperature, a2 — 4aJ>RT is negative, the two values 
of v become imaginary; that is, there is no horizontal tangent. Below 
the critical temperature, however, there are two real and unequal values 

(6) 
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of v, corresponding to each of which there is a horizontal tangent on the 
theoretical isothermal. In other words, the isothermal curve has a max
imum and a minimum value. For certain values of p, then, horizontal 
lines may be drawn cutting the isothermal curve in three points, giving 
three values of v corresponding to the same pressure. It is clear then 
that the theoretical isothermals as given by the Dieterici equation are 
quite similar in their general appearance to those of van der Waals. 

The following results are set down here, partly for reference, partly 
so that they may be compared with the well-known deductions from the 
equation of van der Waals: 

" % - / . * ! (2) 

\ dv I T 

-o/sRT 

(v — by 

v — b 

(RTv2 — av + ab) 

v 

f a(v-b)} I1 —wJ (3) 

V d T A v — b V vRT/ T V vRT/ 
(?) 

/dv \ _ v — b (• i + a/vRT \ G KdT Jp T Vi — a(v — 6) A-2RT/ 

B e - ' * * (i + O / P R T ) ( g ) 

p ' ' i — a(v — b)/v2RT 

Where u represents the energy of the gas, 

(**) = T (** ) - p - **- = ° £ ^ L T . « (approx.) (o) 
\dv / T KdT / , y vRT v(v — 6) v* VV w 

C,-C,+ Re a / ( R T
 M / M > T = ^r + R + — (approx.) (io) 

i — a(v — O)A2RT vT 
Assuming a and b to be functions of T, 

KdT/v T L sRT v — bdT Rv dTJ 
The value of the product pv at constant temperature varies with the 

pressure p. The law governing this relation can be deduced from the 
Dieterici equation and is as follows: 

(d(pv)\ = a2(6RT — a)+abv , } 

V dp / T ^2RT — av + ab 
This expression is positive when 6RT > a, or 6 > a/RT, as must be the 
case with hydrogen at ordinary temperatures and even at as low a tem
perature as —147 °. If, however, a /RT is greater than b, the expression 
is at first negative for small values of p, becomes equal to zero and finally 
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positive when p is sufficiently increased or v sufficiently diminished. 
When the expression becomes zero, we have a minimum value of pv. 
The condition for this minimum is obtained by putting a2(6RT — a) + 
abv equal to zero. Neglecting the impossible value, v = 0, we arrive 
at the following relations which hold when pv has its minimum value: 

v = ah/{a — 6RT) (12) 

^ i n . ) = - ^ 1 - ' ^ (13) 

a- -6RT e l _ 0 / i R T ( } 

68 

Equations 12, 13 and 14 can be used in calculating the values of 
0 and b, above the critical temperature. 

When 0 is greater than 6RT, as we have seen, pv at first diminishes 
as p increases; when a is less than 6RT, pv increases with p. When 
a = 6RT, *'. e., when T = a/R6, the minimum pv would occur when 
v = infinity and p = 0; in other words, at this temperature the minimum 
just fails to appear and the pv curve would be a horizontal straight line 
for a short distance. Under these conditi s, th is would follow Boyle's 
law with great accuracy. If a and 6 were inde^^i :nt of the tempera
ture, we should be able to calculate the temperature at*which a gas would 
obey Boyle's law accurately as equal to four times the critical tempera
ture. Since a and 6 are functions of the temperature, the temperature 
calculated in this manner will be usually quite in error. In cases where 
this temperature is known accurately for any gas, we have a means of 
finding the value of the ratio a/6 at this temperature, for the relation 
0 = 6RT may be written 

a/6 = RT. (15) 
As an example, Young, on page 34 of his "Stoichiometry" states that at 
about 52 °, d(pv)/dp for nitrogen is equal to zero. Accordingly at this 
temperature, the ratio a/6 = 325/273 => 1.19, when the unit mass of 
nitrogen is that which occupies unit volume at zero, and a pressure of 
one atmosphere. 

Equation 11 can be simplified for the case that the pressures obtaining 
are small and the volumes large. We obtain, then, 

d(pv) _ v2(bRT—a) _ , a_ 
dp D8RT RT 

or 
P*t — M B - 6 _ _ £ _ t ( l 6 ) 

p» — px RT 
This equation may also be obtained directly from the Dieterici equa
tion, which for low pressures may be written, pv = RT + pb — a/v. 
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Hence p0% — pxvx = (p2 •— pi)b — (i/v2 —• i/v{)a = {pi — pi)(b — c/RT) 
and finally Equation 16. 

PV Curve at the Critical Temperature. 
Some interesting results are obtained by applying Equations 12, 13 

and 14 when the gas is at the critical temperature. In this case, when 
pv has its minimum value, the following relations hold: 

4A b = Y 3 

(17) P = za/^b2 = 3/e pc = 1.104 pc 

pVmin. = a/esb = 2/e pcve - 4/e3 RTC = 0.736 pcvc = 0.1991 RT1; 

The above results may be expressed in words as follows: At the crit
ical temperature, the minimum value of pv is about 3/4 of its value in the 
critical state, and about Vs of its "theoretical" value; the corresponding 
volume is 2/3 of the critical volume, and the corresponding pressure is 
about 10% greater than the critical pressure. I t might also be added 
that Dieterici's equation for the critical isothermal becomes 

p = a/4b(v — b) e-tb/v (18) 

which for low pressures is equivalent to 

p(v + 3b) = RT,. 

Negative Pressures Impossible. 
Returning to a consideration of Equation 5, we said that the two values of 

v given by this equation correspond to the maximum and minimum pressures 
on any theoretical isothermal. As is well known, on using van der Waals' 
equation, the theoretical minimum pressure is frequently negative, since 
the term a/vi may easily become greater than the term RT/(i> — b). Using 
the Dieterici equation, the external pressure (for that is what p refers to) 
becomes zero only at the absolute zero of temperature and under no cir
cumstances becomes negative. Young,1 describes an experiment by 
Worthington,2 in which a sealed tube completely full of a pure liquid is 
cooled slowly. He finds that in some experiments the thick-walled tube 
actually collapsed owing to what he calls the enormous tension. Now 
on both van der Waals' theory and on that of Dieterici, it is assumed that 
there is no attractive force between the molecules of the fluid and the wall. 
The only force assumed at the boundary is that due to the bombardment 
of the wall by the molecules which reach the surface. The hydrostatic 
pressure may be here neglected. In the absence of any adhesive force 
between the fluid and the wall, a negative external pressure is incon
ceivable. For, assume that under given conditions, the pressure directed 
towards the interior and due to molecular attraction is equal to p0 • The 
pressure on any imaginary unit area in the interior will still be given 

1 "Stoichiometry," 1908, p. 205. 
» Phil. Trans., (A) 183, 355 (1892). 
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by R T / ( D — b). Van der Waals' equation requires us to imagine that 
under certain circumstances p0 is greater than RT/(t>— b). What would 
be the result? The result would be that more molecules would move 
from the surface layers to the interior than in the opposite direction. 
This would mean that the volume of the fluid would decrease until 
R T / ( D — b) became greater than f, since RT/(t> — b) must be greater than 
po in order that the number of molecules moving in the two directions shall 
be equal. For molecules moving towards the surface layer have to over
come a force, while those moving into the interior from the surface are 
moving in the same direction as the force. The phenomena described 
by Worthington then cannot be explained on the fundamental assump
tions either of van der Waals or of Dieterici which do not consider any 
attractive forces between the fluid and the wall. 

Maximum and Minimum Pressures. 
We obtain the theoretical maximum and minimum pressures on any 

isothermal curve by substituting in the Dieterici equation the two values 
of v from Equation 5. Thus: 

2 R 2 T 2 2a 
- (19a) 

• 6RT + V o 2 - 406RT " + Vfl! ~ 4amr 

Also 

2 R 2 T 2 2a 

a — 6RT — Vo2 — 4<z6RT 
PmIn. = ~ — / - T - e a-iat-iabRT ^l9b) 

and therefore 

Pmax. A Pmin. 

<P max. /\ Pmin. 

_ R2T2
 e_a/mr 

_ R T -0 /26RT 

b 
(19c) 

According to Equation 19c, the geometric mean of the maximum and 
minimum pressure on any isothermal is the pressure corresponding to 
the volume 26. At the critical temperature, this volume would be the 
critical volume and the pressure, the critical pressure. At a lower tem
perature, the value of 26 will be different from the critical volume, since 
we shall see that b is a function of the temperature. We shall now pro
ceed to discuss a method of determining the value of b at different tem
peratures. 

Determination of b at Different Temperatures. 
If a substance is at a temperature lower than its critical temperature, ex

perience teaches us that a certain portion of the theoretical isothermal curve 
is not realizable. Instead of the pressure increasing to a maximum, falling to 
a minimum and then increasing indefinitely as the volume is decreased, 
the pressure increases to a certain value and then remains constant until 
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the gas is completely condensed into liquid. If this line of "constant 
pressure be drawn in our pv diagram, it will cut the theoretical isothermal 
in three points; and we know from thermodynamics that the two areas 
bounded by the isothermal and the horizontal line, one above this line 
and the other under it, are equal. Two of the points correspond to the 
volumes of the liquid and the saturated vapor, the third point on our 
continuous isothermal corresponds in practice to a state in which both 
liquid and vapor are present. Let v\, v2 and Vz represent the volumes of 
the liquid, vapor and the third intermediate volume, all corresponding 
to the pressure of the saturated vapor. We have then the equations 

RT- __£_ RT _ A_ RT 2_ , . 
WRT = e „,RT = —- e „»RT- (20; Vt — b V^ — b vz —b 

Evidently the product of the second and third expressions is equal to the 
square of the fourth. We thus obtain 

i • 2 

&=£&=»''**(* + ^ = £ = & > • • ' R T n 

Now if we make the assumption that I/I>I + i / V = 2/%, then, of course, 
(U1 — 6) (^— b) = (vt—62). From these two relations the following 
results are easily deduced: 

V3 = 2b ( 2 1 0 ) 

i/b = if Vi + if Vs (216) 
bvs bvi . . 

Vl = ; V2 = (21c) 
Vs — b Vi-

Vi V2 — b b 

Vi b Vi — 

Vi — b 

© • -

(2 id) 

( 2 1 0 ) 
Wi / Vi — b 

And finally, for the pressure at which liquid and vapor are in equilibrium, 
since v$ — 2b, we obtain 

RT _ ° 
Pt = — e 2MR.T- ( 2 2 ) 

b 
Comparing Equations 22 with 19c, we see that the pressure at which 
liquid and vapor are in equilibrium at any temperature is equal to the 
geometric mean of the maximum and minimum pressures on the theo
retical isothermal for that temperature. Making use of Equation 216, 
and letting ^i and 4% stand for the densities of liquid and saturated vapor, 
Equation 22 may be written as follows: 

\ Vi Vi/ 
(23) 

a(A + it) 
p t - (di + da) RT . e J R I F - (24) 
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The above results have been obtained on the assumption that 2/0» = 
I/DI + i/^. Any of the equations numbered 21 would of course be an 
equivalent assumption, such as, for example, that % = 2b. Our as
sumption may also be written in the form <i3 = (di + <k)/2, i. e., the 
third point on the theoretical isothermal cut by the line of constant pres
sure would represent a density which is the arithmetic mean of the densi
ties of liquid and the saturated vapor. Now what grounds are there for 
this assumption? In the first place, at the critical temperature, V1, vj 
and % are all equal to 26 = ve. As the temperature is decreased, V1 de
creases fairly rapidly and D2 increases quite rapidly, while the intermediate 
volume, v3l might be expected to change very slowly. And in fact, if a 
pv diagram containing a number of isothermals below the critical tempera
ture be examined, it will be seen that the point where the line of constant 
pressure cuts the descending portion of the isothermal represents a volume 
which does not differ much from the critical volume; that is, Vz does not 
differ very much, as the temperature decreases, from vc = ibc, where bc is 
the value of b at the critical temperature. It seemed very plausible to 
assume that % is equal to 2b at every temperature, although not neces
sarily equal to 2bc. 

Another circumstance which led me to the assumption that 2/^3 = 
I/J;I + i/vt was a consideration of the law of Cailletet and Mathias,1 

according to which the mean of the densities of liquid and saturated 
vapor is a linear function of the temperature, a statement therefore which 
would hold for d» or (di + d%)/2. Expressed in our symbols, then, d3 = 
do + «T, where a is always very small. The fact that (di + dO/2 is so 
nearly constant, varying only slightly and uniformly with the tempera
ture seemed to me to be of great significance. If the mean of the densi
ties of liquid and saturated vapor is given by such a simple relation, it 
seemed plausible to assume that this mean is identical with that given 
by the third point on the theoretical isothermal. Additional support 
to the assumption is given by the fact that we found the geometric mean 
of the maximum and minimum pressures on any theoretical isothermal 

RT a 
to be equal to —e-2&RT (cf« Equation 19c). Now this is exactly 

b 
the same pressure which we calculate to be the pressure of saturated 
vapor, when we assume that v» = 2b. It seems fair to assume that this 
result is not simply a chance mathematical agreement, but that it corre
sponds to some physical reality. However insufficient the grounds for 
this assumption may be, I have adopted it in this paper. 

Young2 has shown that in the equation representing the law of Cailletet 
and Mathias, which may be written in the form s? = 0̂ + aT, the value 

1 Compl. rend., 102, 1202 (1886). 
* "Stoichiometry," p. 228. 
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of {—at Js ^) is approximately unity for a large number of substances. 
In this equation, Sy — {di + di)/2 and sc is the critical density, and S0 

would be equal to half the density of the liquid at absolute zero, since 
at this temperature the density of the vapor would be zero. If the law of 
Cailletet and Mathias is assumed to hold accurately down to absolute 
zero and if the value of (—atjsc) is exactly unity, one can easily deduce 
that at the absolute zero, the density of a substance would be four times 
the critical density. Again, since s? = (di + (k)/2 = 1/26, we can ob
tain the following result: 

bT = * £ _ (25) 
(2 - T /T c ) 

This result holds only for those substances for which the law of Cailletet 
and Mathias is valid and for which (—aTc/sc) is approximately unity. 

I t might be added that Thorpe and Riicker's formula1 for estimating 
the critical temperature is easily deducible, if we assume the law of Cail
letet and Mathias and that (—aVJsc) is approximately unity. For if 
di and d% now represent the densities of a liquid at the two temperatures 
Ti and T2, sufficiently below the critical temperature, the densities of 
saturated vapor may be neglected and we obtain d\ = 2St1. Accordingly 
di = 2sc(2 — T i /TJ and ck = 2sc(2 — T2/Tc), from which we easily 
obtain 

T2(Ji — T A _ „ 

2(di — dt) 

Now Thorpe and Riicker's formula is 

T = Tj^i ~~ Ti(Js 
' A(J1 - ck) ' 

where A varies from 1.926 to 2.030 for 24 substances with a mean value 
of 1.974. 

Determination of a. 
From the relation 

RT __"_ RT __?_ 
Ps = . e „RT = e „RT 

Vi — b V2 — 0 
we obtain 

ax = RT log, , 
V2 V1 Vi 0 

or since, according to Equation 210, (o2 — b)/.(vi — b) = {vt/v-iY, 

ai = RT log,, - . (26> 
Vi — D] Vx 

Expressed in terms of the densities di and d%, Equation 26 becomes 
1 Quoted in Young's "Stoichiometry," p. 183. 
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2RT di , , . 
Ol = 7 J loS« J • (26fl) 

Oi. G2 O2 

I have called the "a" of Equations 26 and 26a, ah since a can be calculated 
in several other ways. From the set of Equations 20, we obtain the fol
lowing (since V3 = 26): 

O2 = 2&RT log, RT/pb (27) 

a3 = ViRT log, RTZp(V1 — b) (28) 

O4 = i;2RT log, RT/pivi — b) (29) 
An investigation of Equations 26-29 will show that Equation 29 is 

likely to be the least accurate. In the first place pfa — b) is very nearly 
equal to RT, so that the logarithm of their quotient, which is the same as 
the difference of their logarithms, will be greatly affected by small errors 
in the assumed values of p and U2. As regards an error in the value of p, 
its effect on 04 will be vt/vi times as great as on o3. Then there is no doubt 
that usually i)\ is determined more accurately than D2. 

Another method which I have used in calculating a and b for hydrogen 
is based on Equation 7 or 7a. By Equation 7 

! + _ ? _ = dV/dT = ™£ = d lQg P f,0) 
vRT pjT pdT d log T ' 

If the variation of a and b with the temperature be taken into account, 
we have 

1 + _£_ + J £ _ d± _j_ da_ = dlogp } 

D R T v — b dT vR oT d log T 

If in any particular case, 0 and b are independent of the temperature 
or if the expression [ ] is equal to zero, then, the 

\v — b dt vR dT/ H 

simpler Equation 30 may be employed in determining 0, and hence b. 
Latent Heat of Vaporization. 

In order to determine the latent heat of vaporization, we must calculate 
the work that is done when the liquid expands isothermally from the vol
ume Vi to the volume vt. This takes place in practice under the constant 
«xternal pressure of saturated vapor, ps. The same work will be done 
if the expansion is supposed to follow the course of the theoretical isothermal 
curve. The total work will be expressed by the definite integral 

R T - . * = RT log, * Z 1 * = 2 R T log, ^2, (31) 
O Vi O Vi 

if we make use of Equation 210. R T / (v — b) represents the pressure 
throughout the fluid except in the surface layer which is negligible. Ac-

RT 
•cordingly dv represents the total work done when the volume 

v — b 
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increases by the increment dv. Equation 31 includes the external work, 
the amount of which is p{vi — Di). Hence the internal heat of vaporiza
tion would be 

I = 2RT log, - — p(vt — V1). (310) 

Comparing Equation 31 with Equation 26, we see that we may write 

L = 2RT log, I2 - a - ° (32) 
Vx Vi V2 

The expression a/vi — a/V2 is accordingly a measure of the total heat of 
vaporization, whereas according to the theory of van der Waals it measures 
the internal heat of vaporization only. Equation 32 agrees with the as
sumption made by Dieterici in deriving his original equation that the 
work done by the molecules in penetrating the surface layer is equal to 
aJv. According to Kendall,1 Dieterici has proposed a formula, I = cRT 
log V2/Vi for the internal heat of vaporization. I have not yet been able 
to obtain a copy of the article in which this formula is deduced; it is, how
ever, to be noted that it is Dieterici's formula for the internal heat of 
vaporization which is similar to mine for the total effect. 

Joule-Thomson Effect. 
Our methods of arriving at values of a and b may be summarized as 

follows: At the critical temperature, a and b can be calculated from the 
critical data according to equations numbered 6. Above the critical 
temperature, so long as pv still has a minimum value, use may be made 
of Equations 12, 13 and 14. Below the critical temperature, Equations 
21b and 26 to 29 are to be employed. And of course Equations 30 and 
300^ are valid at all temperatures and can be used where the data are 
sufficiently accurate. Another method of finding a relationship between 
0 and b is based on the Joule-Thomson effect. If AT be the change in 
temperature. Ap the change in pressure, in the Joule-Thomson experi
ments, we have the following relation :2 

AT = m^b^ . Ap ( 3 3 ) 

If we substitute for (dv/dT)P, the value given by Equation 8, we obtain 
the following approximate result: 

.„, 2a/RT — b A , N 

AT = -J- . Ap (34) 
Cf 

Equation 34 will hold most accurately when only low pressures are em
ployed. I t is identical with the formula derived by van der Waals from 
his original equation, as we should expect. If the ration AT/ Ap is de-

1
 THIS JOURNAL, 36, 1620 (1914). 

2 Planck, "Thermodynamik," 1905, p. 123. 
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termined accurately at any temperature, we have a means of calculat
ing 2a/RT — b; while by using Equation 16 we can obtain the value 
of b — a/RT. Hence we can find a and b. Further discussion of these 
points will appear when we apply our equations to the experimental 
results. 

Applications. 
In this paper I have taken —273.090C. as the absolute zero of tempera

ture and 22412 cc. as the volume of a gram-molecule of an ideal gas under 
the pressure of one atmosphere.1 The value assumed for the constant 
R for a mol is 62372 when a mm. of mercury is the unit of pressure, 82.07 
when the unit of pressure is one atmosphere. The unit of volume is 
always one cubic centimeter. When the equations apply to a mass of 
gas whose volume is considered to be unity when the pressure is one 
atmosphere and the temperature is o c C , the value of R is approximately 

i/273-
Isopentane.—Tables I and II contain the results of applying our 

equations to isopentane. The data for the specific volumes of liquid and 
saturated vapor are by Young as given in Landolt-Bornstein's Tabellen.2 

The observed pressures are also by Young and are taken from an article 
by Dieterici.3 The results refer to 1 g. of the substance; pressures are 
given in millimeters of mercury. Accordingly the value of the constant 
R is 62372/72.09. The orthobaric volumes of liquid and vapor are 
represented by ^i and %, respectively; b is calculated using Equation 216, 
and GEi, 02, «3, and a*, by means of Equations 26 to 29. 

C C. 
O 

2 0 

4 0 

6 0 

8 0 

1 0 0 

n o 
1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

1 8 3 

1 8 6 

1 8 7 . 8 

»1. 
CC. 

1.5642 

I . 6 1 4 0 

I . 6 7 0 0 

1-7334 
1.80s I 
1.8947 

1-9455 
2 . 0 0 3 6 

2 . 0 7 2 1 

2 . 1 5 4 2 

2 . 2 4 9 7 

2 . 3 7 7 6 

2 -5549 
2 . 8 5 8 8 

3 . 0 2 0 2 

3 -3025 

4 . 2 6 8 0 

T A B L E I .—ISOPENTANE; 

as. * 
CC. 

9 0 9 

4 2 6 . 6 

2 2 4 . 4 

1 2 7 . 6 

7 7 . 7 0 0 

49 -505 

3 9 - 7 9 3 

3 2 - 1 9 6 
2 6 . 1 0 3 

2 1 . 1 5 1 

17-141 

I 3 - 7 I 9 
1 0 . 7 1 0 

7 -9491 
7-0522 

5 . 9 6 6 6 

4 . 2 6 8 0 
1 Young, "Stoichiometry," 1 
2 1912 , p . 158. 

p . 
CC. 

1-5615 
I . 6 0 7 9 

1-6577 
I . 7 1 0 2 

1-7641 
1.8248 

1.8548 

1.8862 

1-9197 

i - 9 5 5 1 
1.9887 

2 . 0 2 6 4 

2 . 0 6 2 8 

2 . 1 0 2 6 

2 . i 1 4 6 

2 . 1 2 5 8 

2 . 1 3 4 0 

908 , p . 39-

U N I T M A S S = 1 g. 

O1 X 10-". 

4 - 7 1 3 

4-583 
4 . 4 6 1 

4-354 
4 . 2 4 8 

4 . 1 5 0 

4 0 9 3 

4 . 0 3 6 

3 -977 
3 . 9 1 6 

3 . 8 5 0 

3 . 7 7 8 

3 . 6 8 7 

3 . 5 7 9 

3 -535 
3 . 4 7 6 

3 . 4 0 4 

a* X ICr*. 

4 . 7 0 4 

4 . 5 8 2 

4.466 

4-353 
4 . 2 3 6 

4 . 1 2 0 

4 . 0 5 9 

3 -991 
3 .922 

3 . 8 6 0 

3 -771 
3 - 6 9 0 

3 - 5 9 9 

3 - 5 0 3 

3 - 4 7 3 

3 . 4 4 1 

3 -423 

0. X 10-». 

4 . 7 0 8 

4 . 5 8 2 

4.467 

4-354 
4 . 2 4 2 

4 -135 
4 075 

4 . 0 1 2 

3 -948 
3 . 8 8 1 

3 . 8 0 6 

3 . 7 2 6 

3 -633 
3 - 5 2 8 

3-491 

3-449 

3 . 4 2 3 

04 X 10-«. 
2 . 2 2 3 

4 . 4 5 0 

4-434 
4 - 3 i o 

3 . 9 8 7 

3-747 

3-727 
3 -650 

3 . 6 0 4 

3 - 5 6 4 
3-512 

3 . 4 8 0 

3 - 4 5 9 
3 - 4 3 6 

3-432 
3 -428 

3 . 4 2 3 

8 . 4»» . Physik, 9, 176 (1903). 
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( 8C. 

O 

2O 

40 

6o 

80 

100 

n o 

120 

130 

140 

150 

160 

170 

180 

183 

186 

187.8 

TABLE 

P (obs.). 

257-7 

5/2.6 

II3I 

2036 

34OI 

5355 

6586 

8040 

9707 

11620 

13804 

16285 

19094 

22262 

23288 

24350 

25005 

II.—ISOPENTANB 

R T 
p'Te' 

254 

571 

"34 

2034 

3364 

5222 

6406 

7762 

9317 

11091 

13080 

15369 

18061 

212,59 

22434 

23862 

25287 

ai 
"26RT-

7 

9 

UNIT 

% error. 

I .2 

O. I 

0.3 

O. I 

I . I 

2-5 

2.7 

3.4 

4.0 

4-5 

5-2 

5-6 

5-4 

4-5 

3-7 

2 .0 

I. I 

MASS = I g. 

01X6x10-«. 

7-35 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

36 

40 

45 

50 

53 

59 

62 

63 

65 

66 

65 

61 

53 

47 

38 

26 

L (calc). 

95 -8 

90.0 

84.5 

78.9 

73-2 

67.1 

63.7 

60.1 

56.2 

52.0 

47-3 

41.8 

35-O 

25-5 

21.3 

1 5 0 

0 

L (Young) 

86.8 

82.9 

78.8 

74-4 

69.8 

64.6 

61.7 

58.5 

54.8 

50.7 

46.5 

41.0 

34.2 

24-5 

20.2 

13-9 

0 

A study of Table I shows that the value of a decreases from about 
4.7 X io8 at 0° C. to 3.4 X io8 at 187.8° C , the critical temperature. 
The values of at, a? and 03 agree very well throughout, whereas in the 
case of ait its values near 0° and near the critical temperature agree with 
those of ai, a% and O9, but at intermediate temperatures, a4 is considerably 
less than ai,. a% and a%. I am not able wholly to account for this diver
gence, although there is no doubt that some of the discrepancy may be due 
to errors in the assumed values of p and D2. As has been previously re
marked, an error in the value of p would have greater effect on the calcu
lated value of ̂  than on that of a3 or a2. Note that at is calculated with
out any use of the value of p. Its value is determined entirely by Vi, % 
and T. In Table II the values of p at the different temperatures have 
been calculated, using Equation 22 and a\. The column is headed p = 
P T ._*!_ 
— e~ 26RT1 DUt exactly the same values are obtained when we use 

the equations 
RT 

Vi — b 
"siRT or p — 

RT 
wRT • 

I t is to be noted that we should of course obtain the observed values of p, 
if instead of Oi we had used a2, a$, or a( in the corresponding equations. 
Since O2 and as do not differ very much from ai, it is evident that a small 
error in the value of a will seriously affect the calculated values of p, 

RT —— 
except when the equation p = e~ wRT is used to calculate p, in 

V2 — b 
which case a considerable error in a produces only a small change in p. 
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If we compare the calculated with the experimental values of p, we notice 
that the maximum error amounts to 5.6% at about 30° below the crit
ical temperature. This error is, of course, considerable, but still hardly 
sufficient to invalidate the views here presented or to render them un
worthy of discussion. 

In Column 5 of Table II are given the values of the product ah X io - 6 , 
and it will be at once evident that this product exhibits a noteworthy 
constancy throughout the whole temperature interval studied. Now 
for the two dozen or so substances which Young has investigated and for 
which he found (—aTc/sc) to be nearly equal to unity, we deduced Equa
tion 25, viz., b-r = bj(2—T/Te). If the product ah be supposed to 
be absolutely constant, we should have 

aT = ac{2 — T/Te). (25c) 

I t must be clearly borne in mind that these results are supposed to hold 
only under the stated conditions and only below the critical tempera
ture. Applied above this temperature, Equations 25 and 25a would lead to 
results which are contrary to all experimental evidence. For at a tempera
ture equal to twice the critical, b would become infinity and a would vanish. 

In Column 6 of Table II are given the results obtained for the heat of 
vaporization of one gram of isopentane at the pressure of saturated vapor. 
"I1" includes the external work done during the increase of volume. I 
have not access to the original data of Young, but have put in Column 
7 of Table II the results as quoted by Dieterici1 for the internal heat of 
vaporization, to which I have added the calculated values of the external 
work, given by p(vt — Vi). In calculating I1, we have used Equation 32, 
according to which, I1 — 2RT log,, di/ck = Oi ( i /«i— i/fls). Assuming 
the values as quoted by Dieterici to be correct, our formula gives too high 
results, especially at low temperatures. Near o0 C , the error amounts 
to 10% and becomes as low as 1.7% at 1500 C , increasing thereafter as 
we approach the critical temperature. 

I have studied fluorobenzene, normal hexane, carbon tetrachloride with 
results quite similar to those obtained in the case of isopentane. I shall 
not take up space discussing them but proceed to a consideration of car
bon dioxide. 

Carbon Dioxide.—The results in Tables III and IV refer to one gram 
of carbon dioxide, but the unit of pressure is one atmosphere and the unit 
of volume one cubic centimeter. According to Amagat,2 from whom the 
data are taken, the critical temperature is 31.350 C. The fifth column 
of Table IV contains values of the heat of vaporization obtained by 
Dieterici3 from Amagat's experimental results. 

1 Ann. Physik, 9, 176 (1903). 

* Ann. chim. phys., [6] 29, 118-136 (1893). 
3 hoc. Hl. 
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(° C. 
O 

5 
IO 

1 5 

2 0 

2 5 

2 7 

2 8 

2 9 

3° 
3 1 

3 1 - 3 5 

TABLE I I I .—CARBON DIOXIDE; U N I T M A S S 

n. 
CC. 

1.094 

1.126 

1.168 

1.229 

1.306 

1.422 

1.490 

1-532 

1-587 
I .672 

1.866 

2 -155 

V2. 
CC. 

10 .41 

8 .772 
7-518 

6 . 3 2 9 
5 .262 

4 . 1 6 7 

3.759 
3.547 
3-3OI 

2 . 9 9 4 

2 . 5 5 1 

2 - 155 

b. oi. 
cc. Atm.-cc2. 

O.990O 

0 . 9 9 8 0 

I . 0 1 0 9 

I . 0 2 9 2 

I . 0 4 6 3 
I . 0 6 0 2 

I . 0 6 7 0 

I . 0 6 9 9 

1.0717 
I . 0 7 2 9 

1.0777 

1.0775 

2806 

2751 
2719 

2673 

2647 

2581 

2557 

2543 

2523 

2494 

2465 

2447 

Atm.-cc2. 

2731 
2680 

2636 

2595 

2549 

2493 
2472 
2461 

2449 
2436 

242 7 
2421 

TABLE IV.—CARBON DIOXIDE; U N I T M A S S = 

/ 0 C . 

0 

5 

IO 

15 

2 0 

2 5 

2 7 

2 8 

2 9 

3 0 

3 i 

3 1 - 3 5 

P (obs.). 
Attn. 

34-3 
3 9 - 0 
4 4 . 2 

5O.0 

56-3 
63-3 
6 6 . 2 

67.7 
6 9 . 2 

7 0 . 7 

7 2 . 3 
7 2 . 9 

R T 01 
p - e - 2 6 R T - L(CaIc). 

0 Calories. 

3 1 - 9 

36.4 
4 0 . 9 

46 .O 

5 1 - 7 

58.7 
6 1 . 7 

6 , 3 3 
6 5 . 1 
67.4 
7 0 . 1 

7 i - 3 

55-7 
5 1 . 6 

47-7 
4 2 . 7 

37-o 
2 9 . 0 

25 -1 
22 .9 

2 0 . 0 

1 6 . 0 

8.6 
0 

= I g. 

03. 
Atm.-cc2. 

2758 
2712 

2671 

2632 

2586 

2522 

2498 
2484 

2468 

2449 

2432 
2421 

= I g. 

at. 
Atm.-cc8. 

2414 

2443 
2412 

2404 

24OO 

2408 

2408 

2407 

2409 

2414 

2420 

242I 

L (Dieterici). 

55-
S i -

47-
4 2 . 

36. 
2 8 . 

2 4 . 

2 3 -

2 0 . 

1 6 . 

8. 
0 

0 

0 

5 
5 
4 
5 
8 
i 

2 

0 

6 

The results in Table III are somewhat similar to those for isopentane. 
Again a%, (h and 03 show general agreement, but the values of a^ seem to 
be irregular, in no case diverging very much from the value at the critical 
temperature. Table IV shows again that the pressures calculated by 
our formula are usually too low, while on the other hand our calculated 
values of L agree very well with those of Dieterici. 

The experiments of Amagat on the compressibility of carbon dioxide 
allow us to calculate a and b above the critical temperature. Amagat 
has given for a series of temperatures up to 2580 C. the minimum values 
of pv as well as the corresponding pressures. His data are reproduced 
in Table V. Equations 12 and 13, which concern us here, may be written 
as follows: 

a = v(a/b — RT) (12) 
i_...<L pv , s 

e *RT = ~ - (13) 6RT RT 
Using Equation 13 for any temperature and its corresponding value of 
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pv, the value of a/bRT may be calculated by a rather laborious trial 
method; thence the value of a/b is obtained, then 0 from Equation 12 
and finally b. A study of Amagat's results and Ms diagrams will show 
that although the minimum value of pv may be determined with some 
accuracy, the value of the corresponding p; and hence of v, cannot be esti
mated so precisely. An error in locating the minimum of the curve, 
especially at high temperatures where the curves are rather flat, will not 
affect the value of pv very much, but will seriously influence the value 
of p and Z). Hence at the highest temperatures, the values of the pres
sures as given by Amagat must be allowed to be less accurate than those 
at lower temperatures. Hence the ratio a/b is probably more accurately 
determined than a and b. 

In Table V the unit mass of carbon dioxide is that which has a volume 
of i cc. at o0 C. when the pressure is one atmosphere. In order to com
pare the results of Table III with those of Table V, the values of a and b 
in the former table must be divided by (505.9)2 and 505.9, respectively, 
since one gram of carbon dioxide occupies 505.9 cc. at 0° C. and one 
atmosphere. If we select the values of a and b at 20 ° and 30 ° in Table 
III , we shall obtain in the new units: at 200, a = 0.009960, b = 0.002068; 
at 30°, a = 0.009518, b = 0.002121. These values agree very well 
indeed with those in Table V obtained in quite a different way. 

TABLE V 

C C 

20 

30 
40 

50 
60 

70 
80 

90 

100 

137 
198 

258 

'.—CARBON DIOXIDE: 

P-
Atm. 

5 6 . 8 

76 

101 

125 
143 
162 

179 
196 

210 

245 

255 
218 

Pl-
Minimum. 

0 . 1 4 7 5 
O.2185 
O.3083 

0 . 3 9 6 5 
0 . 4 8 3 0 

0 . 5 6 9 0 

0 . 6 5 0 0 
0 . 7 3 1 0 

0 . 8 1 4 0 

I . 0 8 5 0 

1 .4920 
I . 8 1 0 0 

: v = i 
«X10«. 

CC. 

2597 

2875 

3053 
3172 
3378 
3512 

3631 
3730 
3876 
4429 

5851 
8303 

AT O0 C. 

<j/6RT. 

4 . 4 9 7 
4 . 0 2 7 

3 . 6 0 4 

3 . 2 9 4 
3 0 5 0 

2 . 8 4 7 
2 . 6 8 3 

2 . 5 3 8 
2 . 4 0 3 

2-053 
1.661 

1-456 

WHEN p 

a/b. 

4 . 8 6 8 

4 . 5 0 8 

4 . 1 6 8 

3 - 9 3 1 
3 -752 
3 - 6 0 8 

3-5OO 

3 . 4 0 4 
3 . 3 1 2 
3 . 1 0 9 

2 . 8 9 1 

2 . 8 5 7 

= i ATMC 
O X I C 
Atm.-cc. 

9829 

9741 
9192 

8683 

8519 
8218 

7972 
7694 

7495 
7078 

6733 

7433 

(SPHERE 
6X10«. 

CC. 

2019 

2161 

2206 

2209 
2270 

2278 

2278 

2260 
2263 

2271 

2329 
2602 

The results shown in Table V indicate that a continues to decrease 
above the critical temperature, while b, if it increases at all, increases very 
slowly. The values for a and b at 258 ° and probably also at 198 ° are 
likely subject to a considerable error, as has already been pointed out. 
Our results justify us therefore in saying that above the critical tem
perature and up to 200° C. b remains essentially constant in the case of 
carbon dioxide. 

I may state here that results quite similar to those for carbon dioxide 
are obtained with ethylene, when Equations 12, 13 and 14 are applied 
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to Amagat's results. In the case of ethylene also, b seems to remain fairly 
constant from io 0 to 198°, while a decreases as the temperature rises. 

An application of the set of Equations 17 may be made to carbon di
oxide. According to these equations, at the critical temperature, the 

2 
value of the minimum pv is - pcvc, the corresponding pressure is 1.104 pc 

e 
and the volume is 2/3 vc or 4/3 bc. Now interpolating in Table V between 
300 and 400, we find for 31.350, p = 79.4, pv = 0.2302, TI = 0.002899, 
while in the same units, pc = 7 2 . 9 , vc = 0.004260. bc = 0.002130. 
The calculated values for minimum pv would be: p = 80.4, pv = 0.2286. 
v = 0.002840, agreeing very well with the interpolated values. 

Hydrogen.—In discussing hydrogen, we shall take as unit mass that 
quantity of hydrogen which occupies one cubic centimeter at o0 C. and 
the pressure of one atmosphere. According to Witkowski,1 the behavior 
of this gas at 0° C. is given accurately by the equation 

„ , 0.0006154 . 0.000000706 
pv = 0.999384 H ^ H ~<— 

v v-
The Dieterici equation at low pressures may be written 

pv = RT + bp — a/v\ 
If we imagine the pressure to be reduced indefinitely and the volume 
correspondingly increased, we find by comparing this equation with that 
of Witkowski that at o0 C. RT = 0.999384 and hence R = 0.0036595. 
To avoid any misconception, it might be explained that the reason this 
value of R differs from 1/273.09 = 0.0036618, is because our unit mass 
of hydrogen which occupies one cubic centimeter under standard condi
tions, would occupy only 0.999384 cc. if it were a "perfect" gas. Hence 
the value of R is smaller to that degree. 

The critical temperature and pressure of hydrogen have been deter
mined by a number of investigators. BuIIe2 has recently obtained the 
following values: Te = 31.95 =*= 0.1 ° and pc = 11.0 atmospheres. 
Since Tc = a/4R6 and pc = a/^e2b2, we obtain from Bulk's data, a/b = 
0.4677, a = 0.000673, and b = 0.001439. ^ n e minimum values of 
pv have been determined by Witkowski8 and by Kamerlingh Onnes and 
Braak.4 The earlier results of Witkowski agree fairly well with those 
of Onnes and Braak, although Witkowski states that his determinations 
of the pressures corresponding to a minimum pv may be several atmos
pheres in error. The results obtained by applying Equations 12, 13 

1 Bull. acad. Cracosie, 6, 305-338 (1905). 
2 Physik. Z., 14, 860-2; C. A., 7, 3877 (1913). 
* hoc. cit. 
* Comm. Pkys. Lab., Leiden, No. 97 (1907); quoted in Young's "Stoichiometry," 

P- 24-
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and 14 to the data of Witkowski and of Onnes and Braak are set forth 
in Tables VI and VII, respectively. Both tables would indicate that 
the ratio a/b is approximately constant in the temperature interval un
der investigation. The results from Witkowski's data seem to show a 
decrease of both 0 and b with rise of temperature, while the presumably 
more accurate data of Onnes and Braak exhibit a and b as essentially 
constant from —2170 C. to —1830 C. The values of a and b in Tables 
VI and VII should be compared with those I have calculated from the 
critical data. In both tables the values of a are considerably smaller 
than that of a at the critical temperature; but whereas Witkowski's 
data indicate smaller values of b, those of Onnes and Braak give us values 

TABLE VI 

I 1 C . 

- 1 8 3 
— 1 9 0 

—205 
212 

TABUS VII 

/ 0 C . 

— 1 8 2 . 7 5 

— 1 9 5 . 2 0 
— 2 0 4 . 6 2 
— 2 0 9 . 6 
— 2 1 2 . 7 3 
— 2 1 7 . 3 2 

.—HYDROGEN DATA OF WITKOWSKI. V 

. P-
4tm. 

32 

4 3 - 5 
55 
5 4 - 8 

PV. 
Min. 

O.3270 
O.2970 
O.2273 

O.1926 

o/iRT. 

1-1334 
1 .2329 

I . 4 9 2 0 
I . 6 4 9 6 

.—HYDROGEN DATA OF ONNES AND BRAAK. 

p. 
Atm. 
3 3 3 6 
4 7 . 6 9 

5 2 . I O 

S 3 . 7 3 
5 3 . 6 3 

5 1 . 5 7 

PV. 
Min. 

O.32630 
O.27338 
O.22935 

O.20394 
0 . 1 8 7 8 0 
0 . 1 6 3 3 5 

a/&RT. 

I . 1 7 0 7 

1 .3175 
I . 4 8 1 6 

I . 6 0 1 1 
1.6827 
1 .8234 

TABLE VIII.—HYDROGEN. DATA 
p (Attn.) ( 

Witkowski. 

i 

5 
10 

15 
20 

25 
30 

35 
40 

45 
5 0 

SS 
60 

- — 1 8 3 ° C. t 
p (calc). 

1 .004 
5 . 0 0 8 

9 . 9 9 7 
14-995 
20.OI3 
25 .OII 
3 0 . 0 0 2 

3 5 - 0 0 3 
4 0 . 0 2 4 
4 5 . 0 2 8 
5 0 . 0 2 0 

5 4 - 9 9 7 
59 -935 

- —190° C. 
p (calc). 

I . 0 0 5 

5 .0IO 

9-995 
1 4 . 9 9 0 
2 0 . 0 0 7 
2 4 . 9 9 9 
3 0 . 0 0 5 
35-0OO 
4 0 . 0 0 7 
4 5 - 0 0 3 

4 9 - 9 9 7 
54 -977 
5 9 - 9 5 8 

= I AT 0 ° C . WHEN p = I ATM 
0 X 10«. 6 X 10«. 

a/b. Atm.-cc1. cc. 

0 . 3 7 3 7 
0 . 3 7 4 9 
0 . 3 7 1 8 
0 . 3 6 8 8 

V = IATO 0 

a/b. 

O.3870 
O.3756 
O.3712 

O.3720 
O.3717 
O.3721 

449 1203 
484 1290 
507 1363 

511 1384 

C. WHEN p = I ATM 
0 X 10«. b X 10». 

Atm.-cc'. cc. 

552 1426 

519 1382 

531 1431 
530 1425 
528 1421 

532 1430 

OF WITKOWSKI. 
( - —205° C. 

P (calc). 

I . 0 0 6 

5 - 0 1 4 
10 .003 
14 .986 

19 .989 
2 5 . 0 2 3 
3 0 . 0 5 8 

3 5 . 0 9 3 
4 0 . 0 7 9 

4 5 - 0 3 6 
5 0 . 0 0 5 
55-O0O 
6 0 . 0 0 7 

( = —212° C. 
P (calc). 

I . 0 0 9 
5 - 0 2 6 

1 0 . 0 1 6 

I 5 . 0 I 3 
2 0 . 0 8 9 
2 5 . 0 6 5 
3 0 . 0 8 8 

3 5 . 1 3 9 
4 0 . 1 6 7 
4 5 . 1 2 6 
5 0 . 0 2 6 

5 4 . 9 9 8 
6 0 . 0 5 2 

not appreciably different from the value of b at 32 ° absolute. We shall, 
however, shortly produce evidence indicating that, above—1830 C. at 
least, 0 and b for hydrogen do decrease with rise of temperature. Be
fore proceeding to this, I desire to illustrate how well the Dieterici equa-
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tion reproduces the Witkowski data. Witkowski1 gives a table contain
ing the values of pv at a series of temperatures from ioo0 C. to —212° C. 
and up to a pressure of 60 atmospheres. In Table VIII I have given the 
results of calculating the pressures corresponding to volumes as given by 
Witkowski and at the temperatures —183°, —1900, —2050, and —2120 C. 

RT 0 
I have used the equation p = e~iRf> where R is equal 

v — b 
to 0.0036595, and the values of a and b for each temperature are taken 
from Table VI. The agreement of the calculated pressures with those 
given by Witkowski is certainly very excellent. It is to be noted that 
the values of a and b which have been employed have not been deduced 
from the whole course of the pv curve, but in each case from its minimum 
value only. 

According to Equation ja, we have the relation 
p ( , a . T db 1 da 1 + ~mr + — 

4 T / , T \ wRT v — bdT vR dT 

R __2_ / , a , T * 1 da\ 

vRdr) 

(70) 

•b V ziRT v — bdT vR, 
If a and b are constants, or if the expression (T/(v — b). db/dT — i/vR 
da/dT) vanishes, we have the simpler equations 

VdT/ , T V vRT/ v—b V oRT/ 

In most cases, where v is not too small, we could write 

'dp\ R 

dT/v v — b 

(7) 

(7b) 

I have assumed that the expression , i n what 
v — b dT vR dT 

follows, is very small, compared with a/vRT in the case of hydrogen, 
at least throughout the temperature interval —183° C. to ioo° C. The 
grounds for this will be discussed later. I have accordingly used Equa
tion 7 to determine a and b, calculating (dp/dT)v and P / T from the Wit
kowski data. In his memoir, Witkowski gives the pressures at the series 
of temperatures, ioo0, o0, —77°, —104°, —147°, —183°, —^90°, —205°, 
and —212° C , corresponding to a series of volumes from 1 to 1/60 in 
terms of the volume at o° C. and one atmosphere. The method I em
ployed to obtain an accurate estimate of {dp/dT)v at each temperature 
will be clear from the following example: Corresponding to the volume 
v — 1/40, Witkowski gives for the temperatures —770, —1040, and 
—147° C. the pressures 29.33, 2 5 - 2 2 and 18.63, respectively. An equa
tion of the second degree in T was found algebraically which would re-

1 hoc. cit. 
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produce the pressures at the three temperatures. From this equation, 
the values of (dp/dT)v at —104° was easily calculated. Geometrically, 
having pressures as ordinates and temperatures as abscissae, a parabola 
was found which would go through the three points and the slope at the 
intermediate point was the value sought. The parabola, of course, in 
no case departs much from a straight line. To find (dp/dT), at —147 ° C , 
the data for —104 °, —147 ° and —183° were used and so on for all the 
other temperatures. I t is evident that the values we have obtained for 
(dp/dT)v will, in all probability, be more accurate at higher tempera
tures than at lower ones. The pressures at o 0 C. are more than four 
times as great as at —205 ° C , and as (dp/dt)v is obtained by a differ
ent method, the probable error at —205 ° will be four times as great 
as at o0 C , assuming that the pressures in both cases have been deter
mined with the same relative accuracy. I have determined (dp/dT)c, 
and hence a and b, using the data for the volumes 1/60, 1/50, 1/40, 1/30 
and 1/20 for the temperatures already named, excluding the highest 
and the lowest one. Here again the accuracy of the calculated result 
will, for obvious reasons, be inversely proportional to the volume selected. 
This will be illustrated by the results obtained'at the various volumes, 
although there is a surprising agreement in nearly all cases. 

In Table IX are given the detailed results for v = 1/60, while Table X 
contains only the final results for a, b, and a/b, with the averages in the 
last column, excluding from the average the results for v = 1/20, which 
are likely to be least accurate. Table XI is simply a summary of these 
average values together with the values for 100° C , obtained by a rather 
uncertain extrapolation. As emphasized previously, the results at low 
temperatures are probably less trustworthy than those at higher tem
peratures. An examination of these tables shows that a and b decrease 
with rise of temperature. With regard to the ratio a/b, the same state
ment may actually be true, in spite of the fact that from —205 ° to —147 ° 
the tables indicate a slight increase with the temperature. The results 
a t low temperatures are, however, subject to such error that it is unsafe 
to indulge in much generalizing. An important point to be noted, how
ever, is that the values of a, b, and also a/b, as found by the present method 
for —183°, —1900 and —205 ° C 1 agree remarkably well with those given 
in Tables VI and VII, found by a quite different method. The equation 
of state for a gas at low pressures can be written in the form pv = RT + 
p(b — a/RT), which at o0 C. is equivalent to pv = RT + p(b — a), 
since RT is approximately unity. Comparing this with Witkowski's 
empirical equation already given, we find the value of (b — a) at 0° C. 
to be 0.0006154. From Table XI we obtain a result in very satisfactory 
agreement with this value, viz., (b — a) = 0.000622. 
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t° C. 

IOO 

O 

- 7 7 
-104 

-147 

-183 
-190 

-205 

-212 

TABLE IX.—HYDROGEN, V = 1 
B — 1 A 

At tn . 

( 8 5 . 4 2 2 ) 

6 2 . 3 3 1 

44-49 
3 8 - 2 1 

2 8 . 1 0 

19.64 

17.98 
14 .42 

12 .72 

p/T. 

O.22824 

O.22688 

O.22597 

O.22286 

O.21800 

O.21639 

O.21178 

KdTJv = i/5o 

O.23136 

O.23229 

O.23337 

0 . 2 3 5 0 5 

O.23679 
O.23720 

O.24110? 

AT O 0 C . ' 

o/cRT. 

O.OI367 

O.02385 

O.03231 

O.05471 

O.08619 

O.09668 

O.13844 

WHEN p 

a X 10«. 
A t m . - c c a . 

2 2 8 

285 

333 
4 2 1 

473 
490 

575 

= I A T M . 

i X 10«. 
CC. 

8 5 1 
9 1 0 

993 
1120 

1273 

1306 

1621 

a/b. 

0 . 2 6 7 9 

O.3132 

0.3353 

0-3759 
0,3716 

0.3752 

0.3547 

TABLE X.—HYDROGEN, a AND b MULTIPLIED BY IO6. 
Mean, excluding 

those for 

I 
o° 

I 

I 
- 7 7 ° 

I 
j 

- 1 0 4 ° 

I 
-147 H 

I 
I 

- 1 8 3 ° 

I 
— 1 9 0 ° 

I 
- 2 0 5 ° 

I 

1 

'a 

!* 
[a/b 

\a 
b 

[a/b 

[ a 
!» 
,a/b 

\a 

!* 
[a/b 

a 

b 

, a/b 

a 
b 

. a/b 

a 

b 

[a/b 

TABLE XI.-

a X io6 

b X io6 

a/b 

0" 

J = 1/60. 

2 2 8 

8 5 1 
O.2679 

285 

9 I O 

O.3132 

333 

993 

o.3353 

4 2 1 

1120 

0-375© 

473 
1273 

0 . 3 7 1 6 

4 9 0 

1306 

0 . 3 7 5 2 

575 
1621 

o.3547 

» - 1/50. « 

2 2 6 

849 
O.2662 

3 0 2 

942 

O.3202 

360 

1027 

0 . 3 5 0 I 

4 0 6 

1089 

0 . 3 7 2 9 

486 

1313 
O.3701 

5 0 6 

1372 
O.3689 

544 
1506 

0 . 3 6 1 5 

! = 1/40. t 

2 3 2 

854 
0 . 2 7 1 8 

2 9 9 

939 
0 . 3 1 8 8 

3 6 0 

1028 

0 . 3 5 0 0 

4 2 1 

1120 

0 . 3 7 6 1 

478 

1277 

0.3746 

5 1 0 

1383 
0.3685 

567 
1572 

0 . 3 6 0 9 

1 ~ 1/30. 

2 1 3 

834 
O.2558 

3 1 4 

963 
O.3261 

366 

1032 

0.3544 

43O 
1144 

O.3756 

487 
1312 

0 . 3 7 1 0 

531 
1448 

0.3667 

625 

1760 

0 . 3 5 5 I 

—HYDROGEN. AVERAGE VALUES OP a, b AND 

—77°. 

225 300 

847 938 

—104°. -

355 
1020 

0.2652 O.3197 O.3480 

-147.°. —183°. —190°. 

419 48 I 509 
I I l 8 1294 1377 

0.3748 0 . 3 7 1 7 0 . 

V - 1/20. 

249 

864 

O.2878 

375 
1026 

0.3655 

396 

1049 

0-3775 

415 
m o 

o.3739 

6 0 4 

1613 

o.3745 

6 5 2 

1770 

0 . 3 6 8 4 

73i 
2045 

0-3575 

v - 1/20. 

2 2 5 

847 
O.2652 

3 0 0 

938 

0 . 3 I 9 7 

355 
1020 

0 . 3 4 8 0 

4 1 9 

1118 

0.3748 

481 

1294 

0 . 3 7 1 7 

509 

1377 
0.3696 

578 
1615 

0 -3579 

a/b PROM T A B L E X. 
+ 100° C. 

—205°. (extrapolated). 

578 
1615 

170? 

800? 

3696 O.3579 0.2125? 

For an ideal gas, we have the relation p/T = R/v. For the mass of 
hydrogen which we are taking as our unit and for a value of v equal to 
1/60, the theoretical value of p/T would be 0.21957. An examination 
of the third column of Table IX will show that somewhere between —147 ° 
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and —183°, p/T has its "theoretical" value. By interpolation, we find 
this temperature to be —171.4°. If we investigate the data for v = 1/50, 
1/40, 1/30 and 1/20, we obtain the following results for this tempera
ture, viz., —171.40, —170.30 , —157.50, —167.o0. Since the results 
for v = 1/60 and 1/50 are the most accurate, we may accept —171.4° C. 
as very close to the temperature at which p/T = R/v. Now, according 
to the equation of state, for moderate pressures, 

p R .J. R/ J a \ 
^ = 7 e

 *RT = - ( i H — I. 
T v — b v\ v vRT/ 

Evidently p/T will equal R/v when b = a/RT, or a/b = RT. Since 
we have found the temperature to be —171.4°, we calculate for this tem
perature a/b = RT = 0.3721, in excellent agreement with the values 
of a/b in Table XI. At the temperature —171.4° C. or 101.6° absolute, 
the pv curve for hydrogen would just fail to have a minimum and would 
proceed virtually horizontally for several atmospheres. At this tempera
ture, the behavior of hydrogen under moderate pressures would be given 
very accurately by Boyle's law. 

Joule-Thomson Effect for Hydrogen.—The values we have obtained 
for a and b, at least at o0 and 100° C , are confirmed if we consider their 
relation to the Joule-Thomson effect. According to the experiments 
of Joule,1 the value of AT/Lp of Equation 34, at 6.8° C. is —0.030, 
and at 90. i ° C. is —0.044. We can use at 6.8 ° C. the values of a and b 
for o0 C. Their values near ioo0 C. will be less and a rough extrapola
tion gives us for ioo° C , a = 0.000170, and b = 0.000800. Using our 
values of a and b in Equation 34, the calculated value of AT/Ap at 6.8° 
C. would be —0.032, and at 90. i 0 C. —0.043, in good agreement with 
the observed values. The negative lowering means, of course, an 
elevation of temperature. 

Whether there shall be a rise or a fall in temperature in the Joule-Thom
son experiment depends on whether (2a/RT — b) is negative or positive. 
For most gases at ordinary temperatures b is less than 20/RT and we have 
a fall in temperature. In the case of hydrogen at ordinary temperatures 
(2a/RT — b) is negative and we have a rise in temperature. At a suffi
ciently low temperature the sign should be reversed. The inversion tem
perature for hydrogen has been found by Olszewski2 to be —80.5° C. 
or 192.5 ° abs. At this temperature, then, we should have (2a/RT — b) = 
0. Now using the values given in Table XI, at —77° C , (2a/RT — b) = 
—0.000102 and at —104° C. (2a /RT— b) = +0.000128. Accord
ingly, at about —89 ° C. or 184 ° abs. (2a/RT — b) would be zero. We 
therefore calculate the inversion temperature to be 184° instead of 192.50 

1 Landolt-Bornstein's Tabellen, 1912, p. 786. 
'Bull. acad. Cracovie, 1901, p. 433; quoted in Young's "Stoichiometry," p. 236. 
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abs. as observed by Olszewski. This investigator later observed in the 
case of nitrogen and oxygen that the inversion temperature depends on 
the initial pressure. Equation 34 in its most rigorous form would also 
show that this must be the case. In any event, the fair agreement of 
our value with that observed by Olszewski is another confirmation of 
the approximate correctness of the values we have obtained for a and b. 

We are now in a better position to consider the assumption we have 
made that in the equation 

\d£\ _ £ [ j _ a T db _ 1 da' 
U T J , " T l ^RT v — b dT vR dT 

we may suppose — — — to be negligible with respect 
v — b dT vR dT 

to O/DRT. AU our values from —205 ° to o° C. have been calcu
lated on this assumption, in applying Equation 7. The assumption seems 
to have been justified by the following facts: (1) The values we have 
obtained at —183° and —1900 (cf. Table XI) agree well with those cal
culated from the minimum values of pv (cf. Tables VI and VII). (2) 
When the values of a and b from Table XI are used in the equation p = 
RT 0 

e~ ;gx» th e experimental results of Witkowski are reproduced 
v — b 
with great accuracy (cf. Table VIII). (3) At 0° C , our values of a and 
b agree well with the value of (b — c/RT) or (b — a) deduced from Wit-
kowski's empirical equation. (4) Our values of a and b at o 0 C. and 
ioo° C. lead us to an estimate of the Joule-Thomson effect in good agree
ment with experiment. (5) Our calculation of the inversion tempera
ture agrees passably well with Olszewski's observation. (6) At o 0 C. 
the value of (b — a/RT), or in this case (b — a), is determined with some 
degree of precision by Witkowski's work to be close to 0.000620. All 
our experience with isopentane, carbon dioxide and other substances not 
considered in this paper goes to show that a always decreases with rise 
of temperature. Since at the critical temperature and around —1830 C , 
(b — a) is much greater than 0.000620, the value of b must decrease with 
rise of temperature to o0 C. Since a and b decrease together, the terms 

T db ^ i da 
T ~jzx and — —zr -nz—will tend to neutralize each other; and the 

v — b dT vR dT 
preceding statements go to show that this neutralization is fairly complete. 

These considerations seem to justify the assumption I have made and 
to render the values of a and b which I have obtained worthy of some de
gree of confidence. That b decreases with rise of temperature, at least 
above —183 ° C , is a result in harmony with the views expressed by T. 
W. Richards1 in regard to the compressibihty of atoms. He shows that 

1 T H I S JOURNAL, 36, 617 (1914); 37, 2417 (1915)-
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the value of b for helium (assuming that a is negligible) decreases from 
o" C. to ioo0 C , and explains the decrease as due to the increasing colli
sion-pressure with increase of temperature. Whatever be the explana
tion, we have found that the same thing is true of b for hydrogen, its 
value at o° C. being about 60% of that at the critical temperature. 

Our calculations for helium are also in harmony with those of T. W. 
Richards. According to Kamerlingh Onnes,1 the critical temperature 
for helium is 5.250 abs. and the critical pressure 1718 millimeters, or 
2.261 atmospheres. From these data we obtain 0 = 0.000089 and 
b = 0.001151, where the unit quantity of helium occupies one cubic 
centimeter under standard conditions. Evidently the value of 0 is very 
small and at ordinary temperatures one is probably justified in considering 
a /RT negligible with reference to b. If we take 4 g. of helium as our unit 
mass, the value of b at 5.250 abs. is 25.6 cc. At o° C. and at ioo0 C. 
Richards finds (b — a/RT) or in this case, very approximately, b, equal 
to 12 cc. and 10.4 cc , respectively. The value of & at 0° C. is thus less 
than half what it is calculated to be at 5.25 ° absolute. 

In the case of hydrogen, however, the value of a /RT is not negligible 
with respect to b and for this reason fairly accurate values of both must 
be determined before one can say whether b decreases or not with the 
temperature. Thus Richards finds an increase in (b — a/RT) for hydro
gen as one goes from o c C. to ioo0 C. In spite of this fact, we have found 
that both a and b decrease in this interval. Richards, of course, fully 
understood that this might be the case, if the value of a were sufficiently 
large. 

Rjchards has also expressed the view that b does not differ very much 
from the volume of the liquefied gas. Our results are so far in agreement 
with this, that we have found b at temperatures considerably below the 
critical temperature to be but slightly smaller than the volume of the 
liquid, as is apparent from the equation i/b = i/vi + i/ih. 

So far we have not particularly concerned ourselves with the ques
tion as to whether a and b in addition to being temperature, are also 
volume functions. The critical state is determined mathematically by 
the condition that (dp/dv)T and (d2p/dv2)r shall both be zero. Assuming 
a and b to be independent of the volume has led to results in conformity 
with experience; for example, to the result that the critical density is 
3.695 times as great as the density would be for an "ideal" gas at the 
critical temperature and pressure. I have therefore felt myself justi
fied in inferring that a and b are essentially independent of the volume 
within the limits of pressure considered in this paper. I t is only right to 
state, however, that when very great pressures are considered, it seems 

1 C. A., 7, 2327 (1913)-
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necessary, as a result of some calculations I have made, to assume that 
b under these circumstances suffers a diminution in volume. This ques
tion I have, however, not investigated thoroughly, partly owing to the lack 
of available, accurate data. 

As a result of the investigation set forth in this paper, I consider that 
the following statements are justified: The Dieterici equation of state 
has a sounder theoretical basis than that of van der Waals. It reproduces 
the behavior of a gas, not only at low pressures, but also at the critical 
point and even at much higher pressures. Although, perhaps, not so 
simple an expression as van der Waals's, many of the deductions from it 
are characterized by great simplicity and elegance. It has of course the 
great advantage over the van der Waals equation that it reproduces the 
critical state accurately, whereas the latter, as is well known, does not. 
It seems to me, therefore, that we ought to abandon the van der Waals 
equation, except as a qualitative interpretation of the facts, and adopt 
the Dieterici equation of state as the only one which has both a sufficiently 
sound theoretical foundation and a sufficiently accurate correspondence 
with the facts. 

Summary. 
In the present paper I have discussed the Dieterici equation of state, 

RT 
p _ e - Jn s o m e detail and have indicated in a number 

v — b 
of ways how accurately it reproduces the experimental results. 

Various methods are developed for calculating the values of a and b 
below, at, and above the critical temperature. 

A formula is deduced for calculating the pressure of saturated vapor from 
the densities of the liquid and vapor. 

A formula is deduced for calculating the latent heat of vaporization 
from the densities of liquid and saturated vapor. 

Isopentane, carbon dioxide and hydrogen are studied in some detail. 
In the case of isopentane, a decreases and b increases from o° C. up to 
the critical temperature. The same is true of carbon dioxide. Above 
the critical temperature, in the case of carbon dioxide, a continues to de
crease, while b remains fairly constant up to 200 ° C. In the case of hydro
gen, a decreases from the critical temperature up to ordinary tempera
tures, while b does the same, from —183° C. at least. 

In the case of hydrogen, its inversion temperature is calculated, and 
also the temperature at which it "obeys" Boyle's law for moderate pres
sures. The latter temperature was calculated to be —171.4 0C. 

Combining the law of Cailletet and Mathias with a result obtained by 
Young for a number of substances, it is shown that the density of a sub
stance at the absolute zero is four times the critical density. 

Our conclusions in regard to the variation of b with the temperature 
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are shown to be in harmony with some of the views of T. W. Richards in 
regard to the compressibility of atoms. 
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This paper is the first report upon a somewhat extended series of in
vestigations, started some two years ago, upon the drop weights, or surface 
tensions, of pure liquids, at many temperatures, and their relationship 
to the values of that property in their binary or other admixtures in various 
proportions, at those temperatures. The main object of the work is to 
provide such a further, perhaps more consistent, set of experimental 
data that eventually it may perhaps be possible to find the cause of the 
mutual effects of liquids upon one another; which, although absent in 
some cases, are great, and yet of widely differing magnitude, in others. 

For some binary liquid mixtures it is known that the so-called law of 
mixtures holds more or less rigidly, i. e., the value of a certain physical 
property of the mixture is equal to the sum of the values of that property 
for the pure constituents under like conditions, each multiplied by the 
ratio of its weight in the mixture, to the total weight of the system. Or, 
expressed as an equation, PMixt. = *Pa + (J—*)P&> where the terms 
P represent the values of the property considered, and x is the weight 
of the constituent a, when the total weight of the mixture is regarded as 
unity. In all cases of this sort it is generally assumed, apparently with 
reason, (i) that no chemical reaction has taken place between the con
stituents, and (2) that the previous molecular state of each constituent 
in the pure condition still persists in their mixture. 

The great mass of binary liquid mixtures, however, not only fails to 
follow this law, but shows a variation from it which depends solely upon 
the constituents selected, and upon the proportions in which they are 
mixed. From the fact that following the law of mixtures is regarded as 
indicating that a system is free from any chemical interaction between 
its constituents, and that the molecular states of its constituents are 
unaltered as a result of the mixing, it is natural to assume that a system 
which does not follow this law is one in which either a chemical reaction 
has taken place, or in which the constituents have undergone a molecular 
change, of the nature of a breaking down of a previous polymerization 
of one or both of the individuals, for example. 

Many investigators, ignoring the second possible cause of change, 


